Serveur d'exploration sur la Covid et les espaces publics

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Aerosol generation from different wind instruments.

Identifieur interne : 000009 ( Main/Exploration ); précédent : 000008; suivant : 000010

Aerosol generation from different wind instruments.

Auteurs : Ruichen He [États-Unis] ; Linyue Gao [États-Unis] ; Maximilian Trifonov [États-Unis] ; Jiarong Hong [États-Unis]

Source :

RBID : pubmed:32952210

Abstract

The potential airborne transmission of COVID-19 has raised significant concerns regarding the safety of musical activities involving wind instruments. However, currently, there is a lack of systematic study and quantitative information of the aerosol generation during these instruments, which is crucial for offering risk assessment and the corresponding mitigation strategies for the reopening of these activities. Collaborating with 15 musicians from the Minnesota Orchestra, we conduct a systematic study of the aerosol generation from a large variety of wind instruments under different music dynamic levels and articulation patterns. We find that the aerosol concentration from different brass and woodwinds exhibits two orders of magnitude variation. Accordingly, we categorize the instruments into low (tuba), intermediate (bassoon, piccolo, flute, bass clarinet, French horn, and clarinet) and high risk (trumpet, bass trombone, and oboe) levels based on a comparison of their aerosol generation with those from normal breathing and speaking. In addition, we observe that the aerosol generation can be affected by the changing dynamic level, articulation pattern, the normal respiratory behaviors of individuals, and even the usage of some special techniques during the instrument play. However, such effects vary substantially for different types of instrument, depending on specific breathing techniques as well as the tube structure and inlet design of the instrument. Overall, our findings can bring insights into the risk assessment of airborne decrease transmission and the corresponding mitigation strategies for various musical activities involving wind instrument plays, including orchestras, community and worship bands, music classes, etc.

DOI: 10.1016/j.jaerosci.2020.105669
PubMed: 32952210
PubMed Central: PMC7492159


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Aerosol generation from different wind instruments.</title>
<author>
<name sortKey="He, Ruichen" sort="He, Ruichen" uniqKey="He R" first="Ruichen" last="He">Ruichen He</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414</wicri:regionArea>
<wicri:noRegion>55414</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Linyue" sort="Gao, Linyue" uniqKey="Gao L" first="Linyue" last="Gao">Linyue Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414</wicri:regionArea>
<wicri:noRegion>55414</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trifonov, Maximilian" sort="Trifonov, Maximilian" uniqKey="Trifonov M" first="Maximilian" last="Trifonov">Maximilian Trifonov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414</wicri:regionArea>
<wicri:noRegion>55414</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hong, Jiarong" sort="Hong, Jiarong" uniqKey="Hong J" first="Jiarong" last="Hong">Jiarong Hong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414</wicri:regionArea>
<wicri:noRegion>55414</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414</wicri:regionArea>
<wicri:noRegion>55414</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:32952210</idno>
<idno type="pmid">32952210</idno>
<idno type="doi">10.1016/j.jaerosci.2020.105669</idno>
<idno type="pmc">PMC7492159</idno>
<idno type="wicri:Area/Main/Corpus">000106</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000106</idno>
<idno type="wicri:Area/Main/Curation">000106</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000106</idno>
<idno type="wicri:Area/Main/Exploration">000106</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Aerosol generation from different wind instruments.</title>
<author>
<name sortKey="He, Ruichen" sort="He, Ruichen" uniqKey="He R" first="Ruichen" last="He">Ruichen He</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414</wicri:regionArea>
<wicri:noRegion>55414</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Linyue" sort="Gao, Linyue" uniqKey="Gao L" first="Linyue" last="Gao">Linyue Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414</wicri:regionArea>
<wicri:noRegion>55414</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trifonov, Maximilian" sort="Trifonov, Maximilian" uniqKey="Trifonov M" first="Maximilian" last="Trifonov">Maximilian Trifonov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414</wicri:regionArea>
<wicri:noRegion>55414</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hong, Jiarong" sort="Hong, Jiarong" uniqKey="Hong J" first="Jiarong" last="Hong">Jiarong Hong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414</wicri:regionArea>
<wicri:noRegion>55414</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414</wicri:regionArea>
<wicri:noRegion>55414</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of aerosol science</title>
<idno type="ISSN">0021-8502</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The potential airborne transmission of COVID-19 has raised significant concerns regarding the safety of musical activities involving wind instruments. However, currently, there is a lack of systematic study and quantitative information of the aerosol generation during these instruments, which is crucial for offering risk assessment and the corresponding mitigation strategies for the reopening of these activities. Collaborating with 15 musicians from the Minnesota Orchestra, we conduct a systematic study of the aerosol generation from a large variety of wind instruments under different music dynamic levels and articulation patterns. We find that the aerosol concentration from different brass and woodwinds exhibits two orders of magnitude variation. Accordingly, we categorize the instruments into low (tuba), intermediate (bassoon, piccolo, flute, bass clarinet, French horn, and clarinet) and high risk (trumpet, bass trombone, and oboe) levels based on a comparison of their aerosol generation with those from normal breathing and speaking. In addition, we observe that the aerosol generation can be affected by the changing dynamic level, articulation pattern, the normal respiratory behaviors of individuals, and even the usage of some special techniques during the instrument play. However, such effects vary substantially for different types of instrument, depending on specific breathing techniques as well as the tube structure and inlet design of the instrument. Overall, our findings can bring insights into the risk assessment of airborne decrease transmission and the corresponding mitigation strategies for various musical activities involving wind instrument plays, including orchestras, community and worship bands, music classes, etc.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32952210</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-8502</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>151</Volume>
<PubDate>
<Year>2021</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Journal of aerosol science</Title>
<ISOAbbreviation>J Aerosol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Aerosol generation from different wind instruments.</ArticleTitle>
<Pagination>
<MedlinePgn>105669</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jaerosci.2020.105669</ELocationID>
<Abstract>
<AbstractText>The potential airborne transmission of COVID-19 has raised significant concerns regarding the safety of musical activities involving wind instruments. However, currently, there is a lack of systematic study and quantitative information of the aerosol generation during these instruments, which is crucial for offering risk assessment and the corresponding mitigation strategies for the reopening of these activities. Collaborating with 15 musicians from the Minnesota Orchestra, we conduct a systematic study of the aerosol generation from a large variety of wind instruments under different music dynamic levels and articulation patterns. We find that the aerosol concentration from different brass and woodwinds exhibits two orders of magnitude variation. Accordingly, we categorize the instruments into low (tuba), intermediate (bassoon, piccolo, flute, bass clarinet, French horn, and clarinet) and high risk (trumpet, bass trombone, and oboe) levels based on a comparison of their aerosol generation with those from normal breathing and speaking. In addition, we observe that the aerosol generation can be affected by the changing dynamic level, articulation pattern, the normal respiratory behaviors of individuals, and even the usage of some special techniques during the instrument play. However, such effects vary substantially for different types of instrument, depending on specific breathing techniques as well as the tube structure and inlet design of the instrument. Overall, our findings can bring insights into the risk assessment of airborne decrease transmission and the corresponding mitigation strategies for various musical activities involving wind instrument plays, including orchestras, community and worship bands, music classes, etc.</AbstractText>
<CopyrightInformation>© 2020 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Ruichen</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Linyue</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Trifonov</LastName>
<ForeName>Maximilian</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hong</LastName>
<ForeName>Jiarong</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55414, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Aerosol Sci</MedlineTA>
<NlmUniqueID>1263115</NlmUniqueID>
<ISSNLinking>0021-8502</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aerosol concentration</Keyword>
<Keyword MajorTopicYN="N">Aerosol size distribution</Keyword>
<Keyword MajorTopicYN="N">Aerosol transmission</Keyword>
<Keyword MajorTopicYN="N">Articulation</Keyword>
<Keyword MajorTopicYN="N">Dynamic level</Keyword>
<Keyword MajorTopicYN="N">Wind instruments</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>08</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>4</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32952210</ArticleId>
<ArticleId IdType="doi">10.1016/j.jaerosci.2020.105669</ArticleId>
<ArticleId IdType="pii">S0021-8502(20)30155-5</ArticleId>
<ArticleId IdType="pmc">PMC7492159</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011;6(5):e20086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21629778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2020 Jan 27;15(1):e0227699</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol Pract. 2020 Jul - Aug;8(7):2152-2155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32360185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Feb 20;9(1):2348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30787335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 Sep 16;100:476-482</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32949774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Rev Respir Dis. 1968 Aug;98(2):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5667756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Jul;583(7818):834-838</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32408338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 1999 Feb;105(2 Pt 1):874-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9972572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chest. 1983 Aug;84(2):202-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6872603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Inf Manage. 2020 Oct;54:102173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32834338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Psychol. 2018 Apr 30;9:617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29760672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Respir Med. 2020 Sep;8(9):914-924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32717211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2020 Jul;81(1):107-114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32335167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Aerosol Sci. 2009 Feb;40(2):122-133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32287373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Oct 2;350(6256):87-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26430119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Otolaryngol. 1966 Mar;83(3):270-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5904050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2020 Jul;14(4):365-373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32246890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Rev Respir Dis. 1967 Mar;95(3):435-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6018703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2019 Jan 11;20(1):8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30634967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Aerosol Sci. 2021 Jan;151:105661</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32968325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2020 Apr;117(4):970-980</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31956983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Resist Infect Control. 2020 Jul 6;9(1):100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32631450</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="He, Ruichen" sort="He, Ruichen" uniqKey="He R" first="Ruichen" last="He">Ruichen He</name>
</noRegion>
<name sortKey="Gao, Linyue" sort="Gao, Linyue" uniqKey="Gao L" first="Linyue" last="Gao">Linyue Gao</name>
<name sortKey="Hong, Jiarong" sort="Hong, Jiarong" uniqKey="Hong J" first="Jiarong" last="Hong">Jiarong Hong</name>
<name sortKey="Hong, Jiarong" sort="Hong, Jiarong" uniqKey="Hong J" first="Jiarong" last="Hong">Jiarong Hong</name>
<name sortKey="Trifonov, Maximilian" sort="Trifonov, Maximilian" uniqKey="Trifonov M" first="Maximilian" last="Trifonov">Maximilian Trifonov</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Wicri/explor/CovidPublicV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000009 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000009 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Wicri
   |area=    CovidPublicV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32952210
   |texte=   Aerosol generation from different wind instruments.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32952210" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidPublicV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Dec 15 17:23:28 2020. Site generation: Wed Jan 27 15:07:40 2021